MISMIP+: Marine Ice Sheet
ISOMIP+: Ice Shelf-Ocean
MISOMIP: Marine Ice Sheet-Ocean
Model Intercomparison Projects

"Rising Coastal Seas on a Warming Earth"

- November 2014
- Organized by David and Denise Holland
- Supported by the WCRP
 Climate and Cryosphere (CliC)
 and NYU Abu Dhabi
- Intercomparisons from idealized to realistic

- Community effort toward understanding climate change in West Antarctica
- 5 year time horizon
- Coordinate with MISMIP and ISMIP6

MISMIP+

- Third Marine Ice Sheet Model Intercomparison Project
- Bedrock topog. based on Gudmundsson et al. (2012)

MISMIP+

The Experiment:

- Begins at steady state with no melting
- 100 years of retreat w/ strong, depth-dependent melting based on Galton-Fenzi (personal comm.)

$$m=rac{
ho_w c_w}{
ho_i L}\gamma_T\Omega(T_f-T)$$
 $\Omega=0.8rac{z_{
m bot}}{500}{
m tanh}\left(erac{z_{
m bot}-z_{
m base}}{200}
ight),$ $T=2,$ $T_f=7.61 imes10^{-4}z_{
m bot}-1.85.$

100 years of re-advance without melting

MISMIP+ retreat

ISOMIP+

- Second Ice-Shelf Ocean Model Intercomparison Project
- Uses MISMIP+ topography (from BISICLES-SSA)
- Calving: ice under 100 m thick calves

ISOMIP+

- No sea-ice or atmospheric forcing
- COLD or WARM forcing: far-field restoring of temperature and salinity (as in Goldberg et al. 2012)

ISOMIP+ Configurations

- "Typical" (TYP) configuration:
 - Ask participants to use grid resolution and parameters of a "typical" run they perform
 - Results should show spread more typical of realistic model comparisons (e.g. CMIP)
- "Standard" (STD) configuration:
 - 2 km horizontal grid;
 - 20 m vertical resolution (depending on vertical coord.)
 - Parameterizations specified (horiz., vert. diffusion; melt boundary conditions, etc.)

ISOMIP+

Experiment 1 geometry

The Four ISOMIP+ Experiments

Two experiments with fixed ice-shelf geometry

Expt 1: advanced geom; cold i.c.; warm forcing

ISOMIP+

Experiment 2 geometry

The Four ISOMIP+ Experiments

Two experiments with fixed ice-shelf geometry

Expt 2: retreated geom; warm i.c.; cold forcing

The Four ISOMIP+ Experiments

Two experiments with prescribed dynamic geometry

- Expt 3: retreating geom; warm i.c. and forcing
- Expt 4: re-advancing geom; cold i.c. and forcing

ISOMIP+: parameter studies

- Intended as reference experiments from which parameter studies can be performed
- Examples:
 - Tides
 - Atmospheric and/or Sea-ice Forcing
 - Modified bed topography
 - Modified mixing parameters/parameterizations
 - Modified melt parameterizations
 - Alternative model resolutions
 - Alternative calving law

MISOMIP

- Essentially MISMIP+ coupled to ISOMIP+
- 100 years of retreat driven by WARM ocean forcing (in progress)
- 100 years of re-advance with COLD ocean forcing (not yet tested)

MISOMIP

• Melt channel appears at higher ocean vertical resolution (10 m)

MISOMIP Website and Email List

http://www.climate-cryosphere.org/activities/targeted/misomip

- Example input data and results: http://portal.nersc.gov/project/iceocean/
- To join the MISOMIP Google Group, send me a request: xylar.asay-davis@pik-potsdam.de

Topography and Parametizations

$$B(x,y) = \max(B_x(x) + B_y(y), B_{max}),$$

$$B_x(x) = B_0 + B_2 \tilde{x}^2 + B_4 \tilde{x}^4 + B_6 \tilde{x}^6,$$

$$\tilde{x} = x/\bar{x}$$

$$B_y(y) = \frac{d_c}{1 + e^{-2(y - L_y/2 - w_c)/f_c}} + \frac{dc}{1 + e^{2(y - L_y/2 + w_c)/f_c}},$$

$$m_w L = -c_p u_* \Gamma_T (T_f - T_w),$$

$$u_*^2 = C_{D,top} u_w^2,$$

$$T_f = \lambda_1 S_b + \lambda_2 + \lambda_3 p_b,$$

$$m_w S_b = -u_* \Gamma_S (S_b - S_w),$$

$$\frac{\partial T}{\partial t} = \cdots - \frac{T - T_{\text{restore}}}{\tau},$$

Fluxes

Virtual Salt Fluxes

$$F_{fw} = 0$$

 $F_{H} = -c_{p} (u_{*}\Gamma_{T} + m_{w}) (T_{f} - T_{w}),$
 $F_{S} = -(u_{*}\Gamma_{S} + m_{w}) (S_{b} - S_{w}).$

Volume fluxes

$$F_{fw} = m_w$$

 $F_H = -c_p \left[m_w T_f + u_* \Gamma_T \left(T_f - T_w \right) \right],$
 $F_S = 0.$

Parameters

Table 1. Parameters common to all three ISOMIP+ experiments

Parameter	Value	Description	
L_x	400 km	Domain length (along ice flow)	
L_y	80 km	Domain width (across ice flow)	
B_{max}	$-720 \; m$	Maximum depth of the ocean	
B_{0}	$-150.0~\mathrm{m}$	Bathymetry at $x = 0$	
B_2	$-728.8 \; {\rm m}$	Second bathymetry coefficient	
B_{4}	343.91 m	Third bathymetry coefficient	
B_{6}	$-50.57~{ m m}$	Forth bathymetry coefficient	
$ar{x}$	300 km	Characteristic along-flow length scale of the bathymetry	
f_c	4.0 km	Characteristic width of the side walls of the channel	
d_c	500 m	The depth of the trough compared with the side walls	
w_c	24 km	The half-width of the trough	
$H_{\sf calve}$	100 m	The minimum thickness of ice, below which it is removed	
$x_{\sf calve}$	600 km	The location in x , beyond which ice is removed	
$ heta_c$	75°S	Latitude of the center of the domain	
$L_{\sf sponge}$	50 km	Width of the sponge layer	
$ au_0$	0.1 days	The time scale of restoring at the eastern edge of the sponge layer	

Parameters

Table 2. Parameters recommended for the *standard* experiments

Parameter	Value	Description
$\Delta x = \Delta y$	2 km	Horizontal resolution
Δz	20 m	Approx. vertical resolution in the open ocean
c_p	$3974~{ m J}^{\circ}{ m C}^{-1}{ m kg}^{-1}$	Specificheat capacity of seawater
\dot{L}	$3.34 \times 10^5 \; \mathrm{Jkg^{-1}}$	Latent heat of fusion of ice
λ_1	$-0.0573^{\circ}\mathrm{C}\mathrm{psu}^{-1}$	Liquidus slope
λ_2	0.0832°C	Liquidus intercept
	$-7.53 imes10^{-8}$ °C Pa $^{-1}$	Liquidus pressure coefficient
Γ_T	2.2×10^{-2}	Nondimensional heat-transfer coefficient
Γ_S	6.2×10^{-4}	Nondimensional salt-transfer coefficient
$C_{D,top}$	2.5×10^{-3}	top drag coefficient
$C_{D,bot}$	2.5×10^{-3}	bottom drag coefficient
κ_i	0	heat diffusivity into ice (perfectly insulating)
$ u_{\sf uns}$	$0.1~{\rm m}^2{\rm s}^{-1}$	Convective vertical viscosity
κ_{uns}	$0.1 \; \mathrm{m^2 s^{-1}}$	Convective vertical diffusivity
$ u_{bkg}$	$1 imes10^{-4}~\text{m}^2\text{s}^{-1}$	Background vertical viscosity
κ_{bkg}	$1 imes10^{-5}~\mathrm{m^2s^{-1}}$	Background vertical diffusivity
$ u_0$	$5 imes10^{-3}~\text{m}^2\text{s}^{-1}$	Neutral vertical viscosity
$ u_H$	$-1.57 imes10^8~ ext{m}^4~ ext{s}^{-1}$	Biharmonic horizontal viscosity
κ_H	$-1.75 imes 10^7 \; \mathrm{m^4 s^{-1}}$	Biharmonic horizontal diffusivity

Parameters

Table 3. Parameters for the COLD profiles

Parameter	Value	Description
T_0	−1.9°C	The surface temperature
T_{bot}	$-1.9^{\circ}C$	The temperature at the ocean floor
S_{0}	33.8 psu	The surface salinity
S_{bot}	34.4 psu	The salinity at the ocean floor

Table 4. Parameters for the WARM profiles

Parameter	Value	Description
$\overline{T_0}$	−1.9°C	The surface temperature
$T_{\sf bot}$	2.0°C	The temperature at the ocean floor
S_{0}	33.8 psu	The surface salinity
S_{bot}	34.7 psu	The salinity at the ocean floor